m ELECTRONIC FRONTIER FOUNDATION

How Unique Is Your Web Browser?

Peter Eckersley*

Electronic Frontier Foundation,
pde@eff.org

Abstract. We investigate the degree to which modern web browsers
are subject to “device fingerprinting” via the version and configura-
tion information that they will transmit to websites upon request. We
implemented one possible fingerprinting algorithm, and collected these
fingerprints from a large sample of browsers that visited our test side,
panopticlick.eff.org. We observe that the distribution of our finger-
print contains at least 18.1 bits of entropy, meaning that if we pick a
browser at random, at best we expect that only one in 286,777 other
browsers will share its fingerprint. Among browsers that support Flash
or Java, the situation is worse, with the average browser carrying at least
18.8 bits of identifying information. 94.2% of browsers with Flash or Java
were unique in our sample.

By observing returning visitors, we estimate how rapidly browser finger-
prints might change over time. In our sample, fingerprints changed quite
rapidly, but even a simple heuristic was usually able to guess when a fin-
gerprint was an “upgraded” version of a previously observed browser’s
fingerprint, with 99.1% of guesses correct and a false positive rate of only
0.86%.

We discuss what privacy threat browser fingerprinting poses in practice,
and what countermeasures may be appropriate to prevent it. There is a
tradeoff between protection against fingerprintability and certain kinds of
debuggability, which in current browsers is weighted heavily against pri-
vacy. Paradoxically, anti-fingerprinting privacy technologies can be self-
defeating if they are not used by a sufficient number of people; we show
that some privacy measures currently fall victim to this paradox, but
others do not.

1 Introduction

It has long been known that many kinds of technological devices possess subtle
but measurable variations which allow them to be “fingerprinted”. Cameras [1,2],
typewriters [3], and quartz crystal clocks [4,5] are among the devices that can be

* Thanks to my colleagues at EFF for their help with many aspects of this project, es-
pecially Seth Schoen, Tim Jones, Hugh D’ Andrade, Chris Controllini, Stu Matthews,
Rebecca Jeschke and Cindy Cohn; to Jered Wierzbicki, John Buckman and Igor Sere-
bryany for MySQL advice; and to Andrew Clausen, Arvind Narayanan and Jonathan
Mayer for helpful discussions about the data. Thanks to Chris Soghoian for suggest-
ing backoff as a defence to font enumeration.

panopticlick.eff.org

entirely or substantially identified by a remote attacker possessing only outputs
or communications from the device.

There are several companies that sell products which purport to fingerprint
web browsers in some manner [6,7], and there are anecdotal reports that these
prints are being used both for analytics and second-layer authentication pur-
poses. But, aside from limited results from one recent experiment [3], there is to
our knowledge no information in the public domain to quantify how much of a
privacy problem fingerprinting may pose.

In this paper we investigate the real-world effectiveness of browser fingerprint-
ing algorithms. We defined one candidate fingerprinting algorithm, and collected
these fingerprints from a sample of 470,161 browsers operated by informed par-
ticipants who visited the website https://panopticlick.eff.org. The details
of the algorithm, and our collection methodology, are discussed in Section 3.
While our sample of browsers is quite biased, it is likely to be representative of
the population of Internet users who pay enough attention to privacy to be aware
of the minimal steps, such as limiting cookies or perhaps using proxy servers for
sensitive browsing, that are generally agreed to be necessary to avoid having
most of one’s browsing activities tracked and collated by various parties.

In this sample of privacy-conscious users, 83.6% of the browsers seen had
an instantaneously unique fingerprint, and a further 5.3% had an anonymity
set of size 2. Among visiting browsers that had either Adobe Flash or a Java
Virtual Machine enabled, 94.2% exhibited instantaneously unique fingerprints
and a further 4.8% had fingerprints that were seen exactly twice. Only 1.0% of
browsers with Flash or Java had anonymity sets larger than two. Overall, we
were able to place a lower bound on the fingerprint distribution entropy of 18.1
bits, meaning that if we pick a browser at random, at best only one in 286,777
other browsers will share its fingerprint. Our results are presented in further
detail in Section 4.

In our data, fingerprints changed quite rapidly. Among the subset of 8,833
users who accepted cookies and visited panopticlick.eff.org several times
over a period of more than 24 hours, 37.4% exhibited at least one fingerprint
change. This large percentage may in part be attributable to the interactive
nature of the site, which immediately reported the uniqueness or otherwise of
fingerprints and thereby encouraged users to find ways to alter them, particularly
to try to make them less unique. Even if 37.4% is an overestimate, this level of
fingerprint instability was at least momentary grounds for privacy optimism.

Unfortunately, we found that a simple algorithm was able to guess and follow
many of these fingerprint changes. If asked about all newly appearing fingerprints
in the dataset, the algorithm was able to correctly pick a “progenitor” finger-
print in 99.1% of cases, with a false positive rate of only 0.87%. The analysis of
changing fingerprints is presented in Section 5.

Springer holds the exclusive right to reproduce and distribute this article until around 2014. An authorized digital
copy is available at https://panopticlick.eff.org.

https://panopticlick.eff.org
panopticlick.eff.org
http://www.springer.de/comp/lncs/index.html
https://panopticlick.eff.org

2 Fingerprints as Threats to Web Privacy

The most common way to track web browsers (by “track” we mean associate the
browser’s activities at different times and with different websites) is via HTTP
cookies, often set by with 3rd party analytics and advertising domains [9].

There is growing awareness among web users that HTTP cookies are a seri-
ous threat to privacy, and many people now block, limit or periodically delete
them. Awareness of supercookies is lower, but political and PR pressures may
eventually force firms like Adobe to make their supercookies comply with the
browser’s normal HTTP cookie privacy settings.

In the mean time, a user seeking to avoid being followed around the Web
must pass three tests. The first is tricky: find appropriate settings that allow
sites to use cookies for necessary user interface features, but prevent other less
welcome kinds of tracking. The second is harder: learn about all the kinds of
supercookies, perhaps including some quite obscure types [10,11], and find ways
to disable them. Only a tiny minority of people will pass the first two tests, but
those who do will be confronted by a third challenge: fingerprinting.

As a tracking mechanism for use against people who limit cookies, fingerprint-
ing also has the insidious property that it may be much harder for investigators
to detect than supercookie methods, since it leaves no persistent evidence of
tagging on the user’s computer.

2.1 Fingerprints as Global Identifiers

If there is enough entropy in the distribution of a given fingerprinting algorithm
to make a recognisable subset of users unique, that fingerprint may essentially
be usable as a ‘Global Identifier’ for those users. Such a global identifier can
be thought of as akin to a cookie that cannot be deleted except by a browser
configuration change that is large enough to break the fingerprint.

Global identifier fingerprints are a worst case for privacy. But even users who
are not globally identified by a particular fingerprint may be vulnerable to more
context-specific kinds of tracking by the same fingerprint algorithm, if the print
is used in combination with other data.

2.2 Fingerprint 4+ IP address as Cookie Regenerators

Some websites use Adobe’s Flash LSO supercookies as a way to ‘regenerate’
normal cookies that the user has deleted, or more discretely, to link the user’s
previous cookie ID with a newly assigned cookie ID [12].

Fingerprints may pose a similar ‘cookie regeneration’ threat, even if those
fingerprints are not globally identifying. In particular, a fingerprint that carries
no more than 15-20 bits of identifying information will in almost all cases be suf-
ficient to uniquely identify a particular browser, given its IP address, its subnet,
or even just its Autonomous System Number.! If the user deletes their cookies

1 One possible exception is that workplaces which synchronize their desktop software
installations completely may provide anonymity sets against this type of attack. We

Springer holds the exclusive right to reproduce and distribute this article until around 2014. An authorized digital
copy is available at https://panopticlick.eff.org.

http://www.springer.de/comp/lncs/index.html
https://panopticlick.eff.org

while continuing to use an IP address, subnet or ASN that they have used pre-
viously, the cookie-setter could, with high probability, link their new cookie to
the old one.

2.3 Fingerprint + IP address in the Absence of Cookies

A final use for fingerprints is as a means of distinguishing machines behind a
single IP address, even if those machines block cookies entirely. It is very likely
that fingerprinting will work for this purpose in all but a tiny number of cases.

3 Methodology

3.1 A Browser Fingerprinting Algorithm

We implemented a browser fingerprinting algorithm by collecting a number of
commonly and less-commonly known characteristics that browsers make avail-
able to websites. Some of these can be inferred from the content of simple, static
HTTP requests; others were collected by AJAX?. We grouped the measurements
into eight separate strings, though some of these strings comprise multiple, re-
lated details. The fingerprint is essentially the concatenation of these strings.
The source of each measurement and is indicated in Table 3.1.

In some cases the informational content of the strings is straightforward,
while in others the measurement can capture more subtle facts. For instance, a
browser with JavaScript disabled will record default values for video, plugins,
fonts and supercookies, so the presence of these measurements indicates that
JavaScript is active. More subtly, browsers with a Flash blocking add-on in-
stalled show Flash in the plugins list, but fail to obtain a list of system fonts
via Flash, thereby creating a distinctive fingerprint, even though neither mea-
surement (plugins, fonts) explicitly detects the Flash blocker. Similarly many
browsers with forged User Agent strings are distinguished because the other
measurements do not comport with the User Agent.>

An example of the fingerprint measurements is shown in Table A. In fact,
Table A shows the modal fingerprint among browsers that included Flash or
Java plugins; it was observed 16 times from 16 distinct IP addresses.

There are many other measurements which could conceivably have been in-
cluded in a fingerprint. Generally, these were omitted for one of three reasons:

were able to detect installations like this because of the appearance of interleaved
cookies (A then B then A) with the same fingerprint and IP. Fingerprints that use
hardware measurements such as clock skew [5] (see also note 4) would often be able
to distinguish amongst these sorts of “cloned” systems.

AJAX is JavaScript that runs inside the browser and sends information back to the
server.

We did not set out to systematically study the prevalence of forged User Agents in our
data, but in passing we noticed 378 browsers sending iPhone User Agents but with
Flash player plugins installed (the iPhone does not currently support Flash), and
72 browsers that identified themselves as Firefox but supported Internet Explorer
userData supercookies.

Springer holds the exclusive right to reproduce and distribute this article until around 2014. An authorized digital
copy is available at https://panopticlick.eff.org.

http://www.springer.de/comp/lncs/index.html
https://panopticlick.eff.org

Variable

Source

Remarks

User Agent

Transmitted by HTTP,
logged by server

Contains Browser micro-version, OS
version, language, toolbars and some-
times other info.

HTTP ACCEPT
headers

Transmitted by HTTP,
logged by server

Cookies enabled?

Inferred in HTTP,
logged by server

Screen resolution

JavaScript AJAX post

Timezone

JavaScript AJAX post

Browser plugins,
plugin versions
and MIME types

JavaScript AJAX post

Sorted before collection. Microsoft Inter-
net Explorer offers no way to enumer-
ate plugins; we used the PluginDetect
JavaScript library to check for 8 com-
mon plugins on that platform, plus ex-
tra code to estimate the Adobe Acrobat
Reader version.

System fonts

Flash applet or Java
applet, collected by
JavaScript/AJAX

Not sorted; see Section 6.4.

Partial
supercookie test

JavaScript AJAX post

We did not implement tests for Flash
LSO cookies, Silverlight cookies, HTML
5 databases, or DOM globalStorage.

Table 1. Browser measurements included in Panopticlick Fingerprints

1. We were unaware of the measurement, or lacked the time to implement it

correctly — including the full use of Microsoft’s ActiveX and Silverlight APIs
to collect fingerprintable measures (which include CPU type and many other
details); detection of more plugins in Internet Explorer; tests for other kinds
of supercookies; detection of system fonts by CSS introspection, even when
Flash and Java are absent [13]; the order in which browsers send HTTP head-
ers; variation in HTTP Accept headers across requests for different content
types; clock skew measurements; TCP stack fingerprinting [11]; and a wide
range of subtle JavaScript behavioural tests that may indicate both browser
add-ons and true browser versions [15].

. We did not believe that the measurement would be sufficiently stable within
a given browser — including geolocation, IP addresses (either yours or your
gateway’s) as detected using Flash or Java, and the CSS history detection
hack [16].

. The measurement requires consent from the user before being collectable
— for instance, Google Gears supercookie support or the wireless router—
based geolocation features included in recent browsers [17] (which are also
non-constant).

Springer holds the exclusive right to reproduce and distribute this article until around 2014. An authorized digital
copy is available at https://panopticlick.eff.org.

http://www.springer.de/comp/lncs/index.html
https://panopticlick.eff.org

In general, it should be assumed that commercial browser fingerprinting ser-
vices would not have omitted measurements for reason 1 above, and that as a
result, commercial fingerprinting methods would be more powerful than the one
studied here.*

3.2 Mathematical Treatment

Suppose that we have a browser fingerprinting algorithm F'(-), such that when
new browser installations x come into being, the outputs of F(z) upon them
follow a discrete probability density function P(f,,), n € [0,1, .., N].% Recall that
the “self-information” or “ surprisal” of a particular output from the algorithm
is given by:

I(F(:E) = fn) = —log, (P(fn))7 (1)

The surprisal I is measured here in units of bits, as a result of the choice of
2 as the logarithm base. The entropy of the distribution P(f,) is the expected
value of the surprisal over all browsers, given by:

N

H(F) == P(fu)logy (P(fa)) (2)

n=0

Surprisal can be thought of as an amount of information about the identity
of the object that is being fingerprinted, where each bit of information cuts
the number of possibilities in half. If a website is regularly visited with equal
probability by a set of X different browsers, we would intuitively estimate that a
particular browser € X would be uniquely recognisable if I(F(xz)) Z logs| X|.
The binomial distribution could be applied to replace this intuition with proper
confidence intervals, but it turns out that with real fingerprints, much bigger
uncertainties arise with our estimates of P(f,), at least when trying to answer

4 While this paper was under review, we were sent a quote from a Gartner report on
fingerprinting services that stated,

Arcot... claims it is able to ascertain PC clock processor speed, along with
more-common browser factors to help identify a device. 41st Parameter looks
at more than 100 parameters, and at the core of its algorithm is a time differ-
ential parameter that measures the time difference between a user’s PC (down
to the millisecond) and a server’s PC. ThreatMetrix claims that it can detect
irregularities in the TCP/IP stack and can pierce through proxy servers... lo-
vation provides device tagging (through LSOs) and clientless [fingerprinting],
and is best distinguished by its reputation database, which has data on millions
of PCs.

® Real browser fingerprints are the result of decentralised decisions by software devel-
opers, software users, and occasionally, technical accident. It is not obvious what the
set of possible values is, or even how large that set is. Although it is finite, the set is
large and sparse, with all of the attendant problems for privacy that that poses [18].

Springer holds the exclusive right to reproduce and distribute this article until around 2014. An authorized digital
copy is available at https://panopticlick.eff.org.

http://www.springer.de/comp/lncs/index.html
https://panopticlick.eff.org

questions about which browsers are uniquely recognisable. This topic will be
reprised in Section 4.1, after more details on our methodology and results.

In the case of a fingerprint formed by combining several different measure-
ments Fy(-),s € 9, it is meaningful to talk about the surprisal of any particular
measurement, and to define entropy for that component of the fingerprint ac-
cordingly:

IS(fn,S) = —log, (P(fn,S)) (3)

N
H(F;) = — Z P(fs,n) log, (P(fs,n)) (4)
n=0

Note that the surprisal of two fingerprint components F and F; can only be
added linearly if the two variables are statistically independent, which tends not
to be the case. Instead, conditional self-information must be used:

Is+t(fn,sa fn,t) = *IOgQ (P(fn,s | fn,t)) (5)

Cases like the identification of a Flash blocker by combination of separate
plugin and font measurements (see Section 3.1) are predicted accordingly, be-
cause P(fonts = “not detected” | “Flash” € plugins) is very small.

3.3 Data Collection and Preprocessing

We deployed code to collect our fingerprints and report them — along with sim-
ple self-information measurements calculated from live fingerprint tallies — at
panopticlick.eff.org. A large number of people heard about the site through
websites like Slashdot, BoingBoing, Lifehacker, Ars Technica, i09, and through
social media channels like Twitter, Facebook, Digg and Reddit. The data for
this paper was collected between the 27th of January and the 15th of February,
2010.

For each HTTP client that followed the “test me” link at panopticlick.
eff.org, we recorded the fingerprint, as well as a 3-month persistent HTTP
cookie ID (if the browser accepted cookies), an HMAC of the IP address (using
a key that we later discarded), and an HMAC of the IP address with the least
significant octet erased.

We kept live tallies of each fingerprint, but in order to reduce double-counting,
we did not increment the live tally if we had previously seen that precise fin-
gerprint with that precise cookie ID. Before computing the statistics reported
throughout this paper, we undertook several further offline preprocessing steps.

Firstly, we excluded a number of our early data points, which had been
collected before the diagnosis and correction of some minor bugs in our client
side JavaScript and database types. We excluded the records that had been
directly affected by these bugs, and (in order to reduce biasing) other records
collected while the bugs were present.

Next, we undertook some preprocessing to correct for the fact that some users
who blocked, deleted or limited the duration of cookies had been multi-counted

Springer holds the exclusive right to reproduce and distribute this article until around 2014. An authorized digital
copy is available at https://panopticlick.eff.org.

panopticlick.eff.org
panopticlick.eff.org
panopticlick.eff.org
http://www.springer.de/comp/lncs/index.html
https://panopticlick.eff.org

in the live data, while those whose browsers accepted our persistent cookie would
not be. We assumed that all browsers with identical fingerprints and identical
IP addresses were the same.

There was one exception to the (fingerprint, IP) rule. If a (fingerprint, IP)
tuple exhibited “interleaved” cookies, all distinct cookies at that IP were counted
as separate instances of that fingerprint. “Interleaved” meant that the same
fingerprint was seen from the same IP address first with cookie A, then cookie B,
then cookie A again, which would likely indicate that multiple identical systems
were operating behind a single firewall. We saw interleaved cookies from 2,585
IP addresses, which was 3.5% of the total number of IP addresses that exhibited
either multiple signatures or multiple cookies.

Starting with 1,043,426 hits at the test website, the successive steps de-
scribed above produced a population of 470,161 fingerprint-instances, with min-
imal multi-counting, for statistical analysis.

Lastly we considered whether over-counting might occur because of hosts
changing IP addresses. We were able to detect such IP changes among cookie-
accepting browsers; 14,849 users changed IPs, with their subsequent destinations
making up 4.6% of the 321,155 IP addresses from which users accepted cookies.
This percentage was small enough to accept it as an error rate; had it been
large, we could have reduced the weight of every non-cookie fingerprint by this
percentage, in order to counteract the over-counting of non-cookie users who
were visiting the site from multiple IPs.

4 Results

The frequency distribution of fingerprints we observed is shown in Figure 1. Were
the x axis not logarithmic, it would be a strongly “L”-shaped distribution, with
83.6% in an extremely long tail of unique fingerprints at the bottom right, 8.1%
having fingerprints that were fairly “non rare”, with anonymity set sizes in our
sample of 10, and 8.2% in the joint of the L-curve, with fingerprints that were
seen between 2 and 9 times.

Figure 2 shows the distribution of surprisal for different browsers. In gen-
eral, modern desktop browsers fare very poorly, and around 90% of these are
unique. The least unique desktop browsers often have JavaScript disabled (per-
haps via NoScript). iPhone and Android browsers are significantly more uni-
form and harder to fingerprint than desktop browsers; for the time being, these
smartphones do not have the variety of plugins seen on desktop systems.® Sadly,
iPhones and Androids lack good cookie control options like session-cookies-only
or blacklists, so their users are eminently trackable by non-fingerprint means.

Figure 3 shows the sizes of the anonymity sets that would be induced if each
of our eight measurements were used as a fingerprint on its own. In general,
plugins and fonts are the most identifying metrics, followed by User Agent,

5 Android and iPhone fonts are also hard to detect for the time being, so these are

also less fingerprintable

Springer holds the exclusive right to reproduce and distribute this article until around 2014. An authorized digital
copy is available at https://panopticlick.eff.org.

http://www.springer.de/comp/lncs/index.html
https://panopticlick.eff.org

1000 o

100 o

Frequency or Anonymity Set Size

T T T T]
1 10 100 1000 10000 100000 1000000
409,296 Distinct Fingerprints

Fig. 1. The observed distribution of fingerprints is extremely skewed, with 83.6%
of fingerprints lying in the tail on the right.

HTTP Accept, and screen resolution, though all of the metrics are uniquely
identifying in some cases.

4.1 Global Uniqueness

We know that in the particular sample of browsers observed by Panopticlick,
83.6% had unique fingerprints. But we might be interested in the question of
what percentage of browsers in existence are unique, regardless of whether they
visited our test website.

Mayer has argued [8] that it is almost impossible to reach any conclusions
about the global uniqueness of a browser fingerprint, because the multinomi-
nal theorem indicates that the maximum likelihood for the probability of any
fingerprint that was unique in a sample of size N is:

1

PUf) = % (6)

A fingerprint with this probability would be far from unique in the global set

of browsers G, because G > N. This may indeed be the maximum subjective
likelihood for any single fingerprint that we observe, but in fact, this conclusion
is wildly over-optimistic for privacy. If the probability of each unique fingerprint
in the sample N had been %, the applying the multinomial expansion for those
392,938 events of probabilty %, it would have been inordinately unlikely that we
would have seen each of these events precisely once. Essentially, the maximum
likelihood approach has assigned a probability of zero for all fingerprints that

Springer holds the exclusive right to reproduce and distribute this article until around 2014. An authorized digital
copy is available at https://panopticlick.eff.org.

http://www.springer.de/comp/lncs/index.html
https://panopticlick.eff.org

10

0.8 B
4 Firefox (258,898)
2 0.6 ——— MSIE (57,207)
3 ——— Opera (28,002)
B | Chrome (64,870)
s Android (1,446)
5 iPhone (6,907)
;E Konqueror (1,686)
a BlackBerry (259)
g 044 Safari (35,055)
~ Text mode browsers (1,274)
0.2
0.0

Surprisal (bits)

Fig. 2. Surprisal distributions for different categories of browser
(believing the User Agent naively; see note 3).

were not seen in the sample N, when in fact many new fingerprints would appear
in a larger sample G.

What we could attempt to meaningfully infer is the global proportion of
uniqueness. The best way to do that would be to fit a very-long-tailed probability
density function so that it reasonably predicts Figure 1. Then, we could employ
Monte Carlo simulations to estimate levels of uniqueness and fingerprint entropy
in a global population of any given size G. Furthermore, this method could offer
confidence intervals for the proposition that a fingerprint unique in N would
remain unique in G.

We did not prioritise conducting that analysis for a fairly prosaic reason:
the dataset collected at panopticlick.eff.org is so biased towards technically
educated and privacy-conscious users that it is somewhat meaningless to extrap-
olate it out to a global population size. If other fingerprint datasets are collected
that do not suffer from this level of bias, it may be interesting to extrapolate
from those.

Springer holds the exclusive right to reproduce and distribute this article until around 2014. An authorized digital
copy is available at https://panopticlick.eff.org.

panopticlick.eff.org
http://www.springer.de/comp/lncs/index.html
https://panopticlick.eff.org

11

100000 h

P |
-

10000
1
T u user_agent
i p plugins
10004 " fonts
v video
s supercookies

http_accept
timezone
cookie_enabled

100

Number of Browsers in Anonymity Sets of Size k

1 10 100 1000 10000 100000
Anonymity Set Size, k

Fig. 3. Number of users in anonymity sets of different sizes, considering each
variable separately.

5 How Stable are Browser Fingerprints?

Many events can cause a browser fingerprint to change. In the case of the algo-
rithm we deployed, those events include upgrades to the browser, upgrading a
plugin, disabling cookies, installing a new font or an external application which
includes fonts, or connecting an external monitor which alters the screen resolu-
tion.

By collecting other tracking information alongside fingerprints, we were able
to observe how constant or changeable fingerprints were among Panopticlick
users. In particular, we used cookies to recognise browsers that were returning
visitors, and checked to see whether their fingerprints had changed.

Our observations probably overstate the rate at which fingerprints change
in the real world, because the interactive nature of the Panopticlick website
encourages to experiment with alterations to their browser configuration.

Springer holds the exclusive right to reproduce and distribute this article until around 2014. An authorized digital
copy is available at https://panopticlick.eff.org.

http://www.springer.de/comp/lncs/index.html
https://panopticlick.eff.org

12
5.1 Changing Fingerprints as a Function of Time
Among our userbase, rates of fingerprint change for returning cookie-accepting

users were very high, with 37.4% of users who visited the site more than once”
exhibiting more than one fingerprint over time.

100

80

60

percentage of fingerprints changed

40

5 10 15
davs between preciselv two visits with a given cookie

Fig. 4. Proportion of fingerprints that change over given intervals
(area of datapoints indicates number of observations encompassed, N = 4,638)

The time-dependence of fingerprint changes is illustrated in Figure 4, which
plots the proportion of fingerprints that was constant among cookies that were
seen by Panopticlick exactly twice, with a substantial time interval in between.
The population with precisely two time-separated hits was selected because this
group is significantly less likely to be actively ¢rying to alter their browser fin-
gerprints (we assume that most people experimenting in order to make their
browsers unique will reload the page promptly at some point).

Upon first examination, the high rate of change for fingerprints — even if
it overstates the rate of change in the wider Internet population — appears to
constitute a powerful protection against fingerprinting attacks.

5.2 Following changing fingerprints

We performed a simple test to see whether a connection can be inferred between
the old and new values of fingerprints that change over time.

7 Our measure of returning visitors was based on cookies, and did not count reloads
within 1-2 hours of the first visit.

Springer holds the exclusive right to reproduce and distribute this article until around 2014. An authorized digital
copy is available at https://panopticlick.eff.org.

http://www.springer.de/comp/lncs/index.html
https://panopticlick.eff.org

13

We implemented a very simple algorithm to heuristically estimate whether a
given fingerprint might be an evolved version of a fingerprint seen previously.

The algorithm (set out below) operated on an input fingerprint ¢, where
Fi(g),i € {1..8} are the 8 fingerprint components illustrated in Table 3.1, and G
is the set of all browsers observed in our dataset. The algorithm did not attempt
to guess a preceding fingerprint if ¢ indicated that the browser did not have
Flash or Java installed.

Algorithm 1 guesses which other fingerprint might have changed into ¢

candidates <+ []
for all g € G do
for i € {1..8} do
if for all j € {1..8},5 #i: Fj(g) = Fj(q) then
candidates + candidates + (g, 7)
end if
end for
end for
if length(candidates) = 1 then
g,j <+ candidates[0]
if j € {cookies?, video, timezone, supercookies} then
return g
else
j € {user_agent, http_accept, plugins, fonts}
if SequenceMatcher (Fj(g), Fj(g)) .ratio() < 0.85 then
return g
end if
end if
end if
return NULL

difflib.SequenceMatcher() .ratio() is a Python standard library function for esti-
mating the similarity of strings. We used Python 2.5.4.

We ran our algorithm over the set of users whose cookies indicated that they
were returning to the site 1-2 hours or more after their first visit, and who now
had a different fingerprint. Excluding users whose fingerprints changed because
they disabled javascript (a common case in response to visiting panopticlick.
eff.org, but perhaps not so common in the real world), our heuristic made a
correct guess in 65% of cases, an incorrect guess in 0.56% of cases, and no guess
in 35% of cases. 99.1% of guesses were correct, while the false positive rate was
0.86%. Our algorithm was clearly very crude, and no doubt could be significantly
improved with effort.

Springer holds the exclusive right to reproduce and distribute this article until around 2014. An authorized digital
copy is available at https://panopticlick.eff.org.

panopticlick.eff.org
panopticlick.eff.org
http://www.springer.de/comp/lncs/index.html
https://panopticlick.eff.org

14
6 Defending Against Fingerprinting

6.1 The Paradox of Fingerprintable Privacy Enhancing Technologies

Sometimes, technologies intended to enhance user privacy turn out to make fin-
gerprinting easier. Extreme examples include many forms of User Agent spoofing
(see note 3) and Flash blocking browser extensions, as discussed in Section 3.1.
The paradox, essentially, is that many kinds of measures to make a device harder
to fingerprint are themselves distinctive unless a lot of other people also take
them.

Examples of measures that might be intended to improve privacy but which
appear to be ineffective or even potentially counterproductive in the face of
fingerprinting include Flash blocking (the mean surprisal of browsers with Flash
blockers is 18.7), and User Agent alteration (see note 3). A small group of users
had “Privoxy” in their User Agent strings; those User Agents alone averaged 15.5
bits of surprisal. All 7 users of the purportedly privacy-enhancing “Browzar”
browser were unique in our dataset.

There are some commendable exceptions to this paradox. TorButton has
evolved to give considerable thought to fingerprint resistance [19] and may be
receiving the levels of scrutiny necessary to succeed in that project [15]. NoScript
is a useful privacy enhancing technology that seems to reduce fingerprintability.®

6.2 Enumeratable Characteristics vs Testable Characteristics

One significant API choice that several plugin and browser vendors made, which
strengthens fingerprints tremendously, is offering function calls that enumerate
large amounts of system information. The navigator.plugins object is one
example, as are the font lists returned by Flash and Java. Microsoft Internet
Explorer deserves an honourable mention for not allowing plugin enumeration,
and even though we collected version numbers for 84 plugins,® the plugin entropy
on IE was 16.5 bits, somewhat lower than the 17.7 seen in non-IE browsers.

The benefits of allowing Java and Flash to read exhaustive system font lists
is questionable. Any website that cares whether someone has the “False Positive
BRK” font installed!® could surely test for it explicitly.

There are probably stronger ease-of-development arguments for making plu-
gins enumeratable, but the example of IE shows that it is not strictly necessary.
We recommend that browsers switch to confirm-only testing for fonts and plu-
gins, with an exponential backoff to prevent exhaustive searches by malicious
javascript.

8 We did not try to devise a detection method for NoScript, though they probably
exist if users allow scripts from certain important domains.

9 Our version numbers for Acrobat were approximate and limited to the major version
number.

10 We noticed that font while grepping through the output of one of our analysis scripts.

Springer holds the exclusive right to reproduce and distribute this article until around 2014. An authorized digital
copy is available at https://panopticlick.eff.org.

http://www.springer.de/comp/lncs/index.html
https://panopticlick.eff.org

15

6.3 Fingerprintability o« Debuggability

Much of the entropy we observe in browsers comes from the precise micro-version
numbers of all of their plugins. This is somewhat true even in IE, where we were
limited to testing the version numbers of 8 common plugins using PluginDetect
and custom JavaScript. A similar, though less severe, problem comes from precise
micro-version numbers in User Agent strings.

The obvious solution to this problem would be to make the version numbers
less precise. Why report Java 1.6.0_17 rather than just Java 1.6, or DivX Web
Player 1.4.0.233 rather than just DivX Web Player 1.47 The motivation for
these precise version numbers appears to be debuggability. Plugin and browser
developers want the option of occasionally excavating the micro-version numbers
of clients when trying to retrospectively diagnose some error that may be present
in a particular micro-version of their code. This is an understandable desire, but
it should now be clear that this decision trades off the user’s privacy against the
developer’s convenience.

There is a spectrum between extreme debuggability and extreme defense
against fingerprinting, and current browsers choose a point in that spectrum
close to the debuggability extreme. Perhaps this should change, especially when
users enter “private browsing” modes.

6.4 Font Orders As An Unnecessary Source of Entropy

When implementing our fingerprinting code, we observed that Adobe Flash and
Sun’s Java VM not only report complete lists of fonts installed on a system, but
return them in non-sorted order, perhaps due to a filesystem inode walk.

We tested the hypothesis that font orders are informative, by checking to see
if any returning, cookie-accepting users had font lists whose order had changed.
We found that only 30 returning browsers had font lists that were different
solely with respect to order. Interestingly, these font lists only varied in the
ordering of certain fonts from the “Lucida” family, and there was a related
population of about 200 browsers where the same fonts varied in ordering and
surrounding whitespace. All of these browsers had Mac OS X User Agent strings,
so we concluded that some application on OS X overwrites these font files, either
during upgrades or at other times. Aside from this group, our hypothesis that
font list orderings were stable turned out to be correct.

Next, we investigated whether a substantial reduction in font list entropy
could be achieved if plugins like Flash and Java began sorting these lists before
returning them via their APIs. Among browsers where the fonts were detectable,
the entropy of the fonts variable was 17.1 bits. We recalculated this quantity
after sorting to be 16.0, a decrease of only 1.1 bits. Confounding this calculation
slightly is the fact that the maximum possible entropy we could detect for either
of these numbers, given our dataset, was only 18.4. It is possible that sorting the
font lists would have made a much larger difference if the sample size had been
large enough for the font entropy and its conceivable ceiling to diverge further.

Springer holds the exclusive right to reproduce and distribute this article until around 2014. An authorized digital
copy is available at https://panopticlick.eff.org.

http://www.springer.de/comp/lncs/index.html
https://panopticlick.eff.org

16

In contrast to the font case, our pre-launch testing seemed to indicate that
the ordering of navigator.plugins was not stable in all browsers, so, as noted
in Table 3.1, we sorted the plugin list before recording it. We subsequently
read Jonathan Mayer’s claims that Mozilla actually exposes two different plugin
orderings based on different inode timestamps [8]. Unfortunately, having sorted
our plugin dataset, we cannot test his claims.

7 Conclusions

We implemented and tested one particular browser fingerprinting method. It
appeared, in general, to be very effective, though as noted in Section 3.1 there
are many measurements that could be added to strengthn it.

Browser fingerprinting is a powerful technique, and fingerprints must be con-
sidered alongside cookies, IP addresses and supercookies when we discuss web
privacy and user trackability. Although fingerprints turn out not to be particu-
larly stable, browsers reveal so much version and configuration information that
they remain overwhelmingly trackable. There are implications both for privacy
policy and technical design.

Policymakers should start treating fingerprintable records as potentially per-
sonally identifiable, and set limits on the durations for which they can be asso-
ciated with identities and sensitive logs like clickstreams and search terms.

The Tor project is noteworthy for already considering and designing against
fingerprintability. Other software that purports to protect web surfers’ privacy
should do likewise, and we hope that the test site at panopticlick.eff.org
may prove useful for this purpose. Browser developers should also consider what
they can do to reduce fingerprintability, particularly at the JavaScript API level.

We identified only three groups of browser with comparatively good resis-
tance to fingerprinting: those that block JavaScript, those that use TorButton,
and certain types of smartphone. It is possible that other such categories exist
in our data. Cloned machines behind firewalls are fairly resistant to our algo-
rithm, but would not be resistant to fingerprints that measure clock skew or
other hardware characteristics.

References

1. Lukas, J., Fridrich, J., Goljan, M.: Digital camera identification from sensor pattern
noise. IEEE Transactions on Information Forensics and Security 1(2) (2006) 205—
214

2. Kai San Choi, E.Y.L., Wong, K.K.: Source Camera Identification Using Footprints
from Lens Aberration. In: Proc. of SPIE-IS&T Electronic Imaging. Volume 6069.,
SPIE (2006)

3. Hilton, O.: The Complexities of Identifying the Modern Typewriter. Journal of
Forensic Sciences 17(2) (1972)

4. Kohno, T., Broido, A., Claffy, K.: Remote Physical Device Fingerprinting. IEEE
Transactions on Dependable and Secure Computing 2(2) (2005) 108

Springer holds the exclusive right to reproduce and distribute this article until around 2014. An authorized digital
copy is available at https://panopticlick.eff.org.

panopticlick.eff.org
http://www.springer.de/comp/lncs/index.html
https://panopticlick.eff.org

17

5. Murdoch, S.: Hot or not: Revealing hidden services by their clock skew. In: Proc.
13th ACM conference on Computer and Communications Security, ACM (2006)
36

6. The 41st Parameter: PCPrint™ (2008) http://www.the41st.com/land/DevicelD.
asp.

7. Mills, E.: Device identification in online banking is privacy threat, expert says.
CNET News (April 2009)

8. Mayer, J.: “Any person... a pamphleteer”: Internet Anonymity in the Age of Web
2.0. Undergraduate Senior Thesis, Princeton University (2009)

9. Krishnamurthy, B., Wills, C.: Generating a privacy footprint on the Internet. In:
Proc. ACM SIGCOMM Internet Measurement Conference, ACM (2006)

10. McKinkley, K.: Cleaning Up After Cookies. iSec Partners White Paper (2008)

11. Pool, M.B.: Meantime: non-consensual HTTP user tracking using caches. (2000)
http://sourcefroge.net/projects/meantime/.

12. Soltani, A., Canty, S., Mayo, Q., Thomas, L., Hoofnagle, C.: Flash Cookies and
Privacy. SSRN preprint (August 2009) http://papers.ssrn.com/sol3/papers.
cfm?abstract_id=1446862.

13. Robinson, S.: Flipping Typical (demonstration of CSS font detection). (2009)
http://flippingtypical.com/.

14. : TCP/IP stack fingerprinting http://en.wikipedia.org/wiki/TCP/IP_stack_
fingerprinting.

15. Fleischer, G.: Attacking Tor at the Application Layer. Presentation at DEFCON
17 (2009) http://pseudo-flaw.net/content/defcon/.

16. : CSS history hack demonstration http://www.whattheinternetknowsaboutyou.
com/.

17. W3C: Geolocation API http://en.wikipedia.org/wiki/W3C_Geolocation_API.

18. Narayanan, A., Shmatikov, V.: Robust De-anonymization of Large Sparse
Datasets. 2(2) (2008) 108

19. Perry, M.: Torbutton Design Doccumentation (2009) https://www.torproject.
org/torbutton/design.

A Appendix : Some Dataset Queries of Interest

Variable Entropy (bits)
user_agent 10.0

plugins 15.4

fonts 13.9

video 4.83
supercookies 2.12
http_accept 6.09

timezone 3.04
cookies_enabled 0.353

Table 2. Mean surprisal for each variable in isolation

Springer holds the exclusive right to reproduce and distribute this article until around 2014. An authorized digital copy is available at
https://panopticlick.eff.org.

http://www.the41st.com/land/DeviceID.asp
http://www.the41st.com/land/DeviceID.asp
http://sourcefroge.net/projects/meantime/
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1446862
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1446862
http://flippingtypical.com/
http://en.wikipedia.org/wiki/TCP/IP_stack_fingerprinting
http://en.wikipedia.org/wiki/TCP/IP_stack_fingerprinting
http://pseudo-flaw.net/content/defcon/
http://www.whattheinternetknowsaboutyou.com/
http://www.whattheinternetknowsaboutyou.com/
http://en.wikipedia.org/wiki/W3C_Geolocation_API
https://www.torproject.org/torbutton/design
https://www.torproject.org/torbutton/design
http://www.springer.de/comp/lncs/index.html
https://panopticlick.eff.org

18

Variable

Value

User Agent

Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.1.7) Gecko/20100106
Ubuntu/9.10 (karmic) Firefox/3.5.7

HTTP ACCEPT head-
ers

text/html, */* ISO-8859-1,utf-8;q=0.7,%;q=0.7 gzip,deflate en-
us,en;q=0.5

Cookies enabled?

Yes

Screen resolution

1280x800x24

Timezone

300

Browser plugins

Plugin 0: DivX Web Player; DivX Web Player version 1.4.0.233; libtotem-mully-plugin.so; (AVI video; video/divx;

divx). Plugin 1: QuickTime Plug-in 7.2.0; The Totem < /a>> 2.28.2

plugin handles video and audio streams.: libtotem-narrowspace-plugin.so; (QuickTime video: video/quicktime; mov)

(MPEG-4 video; video/mp4; mp4) (MacPaint Bitmap image; image/; h C PICT

pntg) (

drawing; image/x-quicktime; pict, pictl, pict2) (MPEG-4 video; video/x-mdv; mdv). Plugin 2: Shockwave Flash;

Shockwave Flash 10.0 r42; fl

-shock sh:

libflashplayer.so; (Shockwave Flash; : swf) (F
Player; application/futuresplash; spl). Plugin 3: VLC Multimedia Plugin (compatible Totem 2.28.2); The Totem < /a> 2.28.2 plugin handles video and audio streams.; libtotem-cone-

plugin.so; (VLC Multimedia Plugin; application/x-vlc-plugin;) (VLC ia Plugin; lc;) (VLC N
Plugin; video/x-google-vic-plugin;) (Ogg multimedia file; application/x-ogg; ogg) (Ogg multimedia file; application/ogg;
ogg) (Ogg Audio; audiofogg; oga) (Ogg Audio; audio/x-ogg; ogg) (Ogg Video; videologg; ogv) (Ogg Video; video/x-

ogg: ogg) (Annodex format; applicatic ; anx) (Annodex Audio; audio/annodex; axa) (Annodex Video;
video/annodex; axv) (MPEG video; video/mpeg; mpg, mpeg, mpe) (WAV audio; audio/wav; wav) (WAV audio; audio/x-wav;
wav) (MP3 audio; audio/mpeg; mp3) (NullSoft video; application/x-nsv-vp3-mp3; nsv) (Flash video; video/flv; flv) (Totem
Multimedia plugin; application/x-totem-plugin;). Plugin 4: Windows Media Player Plug-in 10 (compatible; Totem); The Totem < /a>> 2.28.2 plugin handles video and audio streams.; libtotem-gmp-
plugin.so; (AVI video; application/x-mplayer2; avi, wma, wmv) (ASF video; video/x-ms-asf-plugin; asf, wmv) (AVI video;
video/x-msvideo; asf, wmv) (ASF video; video/x-ms-asf; asf) (Windows Media video; video/x-ms-wmv; wmv) (Windows

Media video; video/x-wmv; wmv) (Windows Media video; video/x-ms-wvx; wmv) (Windows Media video; video/x-ms-wm;

wmv) (Windows Media video; video/x-ms-wmp; wmv) (Windows Media video; application/x-ms-wms; wms) (Windows Me-

dia video; a

vmp; wmp) (] ft ASX playlist; application/asx; asx) (Windows Media audio; audio/x-ms-

wma; wma).

System fonts

wasy 10, UnDotum, Century Schoolbook L, OpenSymbol, msam10, Mukti Narrow, Vemana2000, KacstQurn, Umpush, De-
JjaVu Sans Mono, Purisa, msbm10, KacstBook, KacstLetter, cmr10, Norasi, Loma, KacstDigital, KacstTitleL, mry_KacstQurn,
URW Palladio L, Phetsarath OT, Sawasdee, Tlwg Typist, URW Gothic L, Dingbats, URW Chancery L, FreeSerif, ori1Uni,
KacstOffice, DejaVu Sans, VL Gothic, Kinnari, KacstArt, TiwgMono, Lohit Punjabi, Symbol, Bitstream Charter, KacstOne,
Courier 10 Pitch, cmmil0, WenQuanYi Zen Hei Mono, Nimbus Sans L, TlwgTypewriter, VL PGothic, Rachana, Standard
Symbols L, Lohit Gujarati, kacstPen, KacstDecorative, Nimbus Mono L, Mallige, Nimbus Roman No9 L, KacstPoster, Mukti
Narrow, WenQuanYi Zen Hei, FreeSans, cmex 10, KacstNaskh, Lohit Tamil, Tiwg Typo, UnBatang, KacstFarsi, Waree, Kac-
stTitle, Lohit Hindi, DejaVu Serif, Garuda, KacstScr

n, Fi URW k L, cmsy10 (via Flash)

(Partial)
tests

supercookie

DOM localStorage: Yes, DOM sessionStorage: Yes, IE userData: No

Table 3. A typical Panopticlick fingerprint

Springer holds the exclusive right to reproduce and distribute this article until around 2014. An authorized digital copy is available at

https://panopticlick.eff.org.

http://www.springer.de/comp/lncs/index.html
https://panopticlick.eff.org

19

User Agent Cookies? | Video, Timezone, Plug- | Frequency
ins, Fonts, Supercook-
ies
Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.1.7) Gecko/20091221 Firefox/3.5.7 Yes no javascript 1186
Mozilla/5.0 (iPhone; U; CPU iPhone OS 3_1.2 like Mac OS X; en-us) AppleWebKit/528.18 (KHTML, like Gecko) [No no javascript 1100
Mobile/7D11
Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.2) Gecko/20100115 Firefox/3.6 Yes no javascript 1017
Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.2) Gecko/20100115 Firefox/3.6 Yes no javascript 940
Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; 1v:1.9.2) Gecko/20100115 Firefox/3.6 (NET CLR 3.5.30729) | Yes no javascript 886
Mozilla/5.0 (Windows; U; Windows NT 5.1; de: rv:1.9.2) Gecko/20100115 Firefox/3.6 (NET CLR 3.5.30729) Yes no javascript 788
Morzilla/5.0 (Windows; U; Windows NT 6.1; de; rv:1.9.2) Gecko/20100115 Firefox/3.6 Yes no javascript 775
Mozilla/5.0 (Windows; U; Windows NT 5.1; de; rv:1.9.2) Gecko/20100115 Firefox/3.6 Yes no javascript 746
Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.7) Gecko/20091221 Firefox/3.5.7 Yes no javascript 702
Mozilla/5.0 (Windows; U; Windows NT 5.1; de; rv:1.9.1.7) Gecko/20091221 Firefox/3.5.7 (NET CLR 3.5.30729) | Yes no javascript 618
Table 4. 10 Largest Anonymity Sets
User Agent Cookies? Video Timezone Frequency
Mozilla/5.0 (iPhone; U; CPU iPhone OS 3.1.2 like Mac OS X: en-us) AppleWebKit/528.18 | Yes 320x396x32 480 345
(KHTML, like Gecko) Version/4.0 Mobile/7D11 Safari/528.16
Mozilla/5.0 (iPhone; U; CPU iPhone OS 3.1.2 like Mac OS X de-de) AppleWebKit/528.18 | Yes 320x396x32 -60 280
(KHTML, like Gecko) Version/4.0 Mobile/7D11 Safari/528.16
Moxzilla/5.0 (iPhone; U; CPU iPhone OS 3.1.2 like Mac OS X: en-us) AppleWebKit/528.18 | Yes 320x396x32 360 225
(KHTML, like Gecko) Version/4.0 Mobile/7D11 Safari/528.16
Mozilla/5.0 (iPhone; U; CPU iPhone OS 3.1.2 like Mac OS X: en-us) AppleWebKit/528.18 | Yes 320x396x32 0 150
(KHTML, like Gecko) Version/4.0 Mobile/7D11 Safari/528.16
Mozilla/5.0 (iPhone; U; CPU iPhone OS 3.1.2 like Mac OS X: de-de) AppleWebKit/528.18 | Yes 320x396x32 -60 149
(KHTML, like Gecko) Mobile/7D11
Mozilla/5.0 (iPhone; U; CPU iPhone OS 3.1.2 like Mac OS X: en-us) AppleWebKit/528.18 | Yes 320x396x32 480 149
(KHTML, like Gecko) Mobile/7D11
Moxzilla/5.0 (iPod; U: CPU iPhone OS 3.1.2 like Mac OS X; en-us) AppleWebKit/528.18 | Yes 320x396x32 300 145
(KHTML, like Gecko) Version/4.0 Mobile/7D11 Safari/528.16
Moxzilla/5.0 (iPhone; U; CPU iPhone OS 3.1.2 like Mac OS X: en-us) AppleWebKit/528.18 | Yes 320x396x32 0 114
(KHTML, like Gecko) Mobile/7D11
Moxzilla/5.0 (Linux; U: Android 2.0.1: en-us; Droid Build/ESD56) AppleWebKit/530.17| Yes 480x854x32 300 112
(KHTML, like Gecko) Version/4.0 Mobile Safari/530.17
Moxzilla/5.0 (iPod; U: CPU iPhone OS 3_.1.2 like Mac OS X: de-de) AppleWebKit/528.18 | Yes 320x396x32 -60 97
(KHTML, like Gecko) Version/4.0 Mobile/7D11 Safari/528.16

Table 5. 10 Largest Anonymity Sets with Javascript

Springer holds the exclusive right to reproduce and distribute this article until around 2014. An authorized digital copy is available at

https://panopticlick.eff.org.

http://www.springer.de/comp/lncs/index.html
https://panopticlick.eff.org

	How Unique Is Your Web Browser?
	Peter Eckersley
	Introduction
	Fingerprints as Threats to Web Privacy
	Fingerprints as Global Identifiers
	Fingerprint + IP address as Cookie Regenerators
	Fingerprint + IP address in the Absence of Cookies

	Methodology
	A Browser Fingerprinting Algorithm
	Mathematical Treatment
	Data Collection and Preprocessing

	Results
	Global Uniqueness

	How Stable are Browser Fingerprints?
	Changing Fingerprints as a Function of Time
	Following changing fingerprints

	Defending Against Fingerprinting
	The Paradox of Fingerprintable Privacy Enhancing Technologies
	Enumeratable Characteristics vs Testable Characteristics
	Fingerprintability Debuggability
	Font Orders As An Unnecessary Source of Entropy

	Conclusions
	References
	Appendix : Some Dataset Queries of Interest

	Button1:

